Basics of MD Hashes and Hash-Based Signatures

John Kelsey, NIST and KU Leuven

1/40

Overview of Talk

SPHINCS+ attack depends on a lot of obscure details
In this talk, I'm going to cover some basics to make the attack
easier to understand.

1. Some internal details of SPHINCS+
2. Some internal details of SHA256

2/ 40

Part 1. Hash based signatures

4 bits (0..15) encoded in each hash chain
— N —
Xo T X1 > Xz > >Xois Yo
Xig T » X > XG> X Y1
Xao ™ Xm1 > % : X Y63

U

| —1 I
X »X*» X*» . —»X——pY

64,0 64,15 64
XGST X Xssz > - ’ Xss 5 YGS
XGST X X5 = Xes 15 Yﬁﬁ

ivate FJ/ ublic
private checksum E
key ey

Hash-Based Signatures: 3 /40

Preliminaries: Hash Functions

What do we need from a hash function?
> Collision—resistanee (Important generally, not for our attack)
P> Preimage resistance
» Second preimage resistance
» Many other properties may be important for other applications

Note: cryptographic hash functions are designed to behave
randomly.

Hash-Based Signatures: 4 /40

Generic Attacks

For any hash function, we have these generic attacks:
» Preimages (Given H, find X so HASH(X) = H)
Just try 2" values for X until HASH(X) = H.

» Second Preimages (Given X, find Y so HASH(X) = HASH(Y))
Just try 2" values for Y until HASH(X) = HASH(Y).

If hash function behaves randomly, these are the best we can do.

Hash-Based Signatures: 5 /40

Multitarget attacks

» Suppose | have N different target hashes, H;

» Multitarget preimage: find X such that
HASH(X) € {Hi,...,Hn}

» This is N times faster than normal preimage attack

» SPHINCS+ has a huge number of target hash values—need to
prevent this attack!

Hash-Based Signatures: 6 /40

Defense: Prefixes

» To prevent multitarget attacks, SPHINCS+ employs a unique
prefix

» Every single hash call in SPHINCS+ has a unique prefix
> prefix = PK.seed || ADRS
» Result: Multitarget attacks blocked

H; HASH(Pl || Ml)

Hy «~ HASH(PN H MN)

» ...because hash H; always has only one valid prefix, P;

Hash-Based Signatures: 7 /40

What's a Signature

1. Public and Private keys:

» PK,SK «Generate()
» Private key: Only | know this
» Public key: | want everyone to know this

2. Signing:
» Sign with private key SK
» o +Sign(SK, M)
3. Verification:
» Verify(o, M, PK) — “good” or “bad”

Normally, we can sign many messages with one key.

Hash-Based Signatures: 8 /40

What's a One-Time Signature? A Few-Times Signature?

» One-time signature: | can only sign one message per keypair

> Signing two different messages lets an attacker forge
signatures!

» Note: Signing same message twice is fine.

» WOTS+ used for one-time signatures in SPHINCS+

» Few-times signature: | can sign up to N distinct messages
safely
» Sign too many—leak too much information—attacker can forge
signatures
» N is usually not super large—like 10 or 20.
» FORS used for few-times signatures in SPHINCS—+

SPHINCS+ uses both of these

Hash-Based Signatures: 9 /40

Winternitz/WOTS+ Signatures

4 bits (0..15) encoded in each hash chain
~

— S Nee— —
_ N

Xo T ™% > Xz > >Xos Yo
XLT 'X1.1 > X1‘2 > 'Xus 'Y1

X0l X X . X Ysa

Xeaol > Xeax > Xaaz > - ™Yo >
I 64
Y

X—%X—» X—» e e
650 65,15 65

Xss 0 Xse 1 X - Xes 15 Lﬁ/
private o checksum public
key key

» One-time signature scheme
» Based on hash chains
» Requires a checksum
> Used in SPHINCS+
WOTS+ is specific variant of Winternitz used in SPHINCS+

Hash-Based Signatures: 10 / 40

Digression: Hash Chain

X, =X, X, =X, Y

» Compute each element in chain by hashing previous element.
Xi = HASH(X,'_]_)

» Only need to know starting value—can compute all other
values from there.

> Can't go backward in chain because of preimage resistance.

Hash-Based Signatures: 11 / 40

Winternitz: Signing 2 bits with one hash chain

X, X, e, e, ey
signer: I:LsTpﬁ/> 3
<
D
L
ape i 1 3 r,,,
verifier: (X, J steps -
4-3=1, so
a 1 was signed

» Compute hash chain xg > x1 > x0 > x3 > y
P> Xxq is private signing key; y is public key
» To sign value 01, we reveal xi.

» To verify, walk rest of chain: y = HASH(HASH(HASH(x)))
Works with chains of length 2%, for any w > 1/

Hash-Based Signatures: 12 / 40

Hash chain of 2% entries encodes w bits

oo | " Xo,1 ’ X0,2 >

10 11 12

XL-T.O XL-l.l ’ XL-1,2 >

Private
Key

XX X—>

2" hash values in each line-- (256/w) chains

N

’ Xo,zW-1 ’ YO

> X1,2W»1 > Yl

» XL-l,ZW—l. YL_l

Encode 1st w bits of hash

Encode 2nd w bits of hash

Encode last w bits of hash

Public

Key

So we can encode 256-bit hash with [222] hash chains.

Hash-Based Signatures:

13/ 40

Problem: Attacker can increment values

Arrrows represent hash operations!
> let: xg > x1 > X0 —> X3y
» vy is public key

» To sign value 01, we reveal xi.
» Anyone can walk rest of chain: y = HASH(HASH(HASH(x1)))

» But anyone can change a signature on 01 to a signature on 10
or 11...
P ...just keep computing the hash!

This is why we need a checksum

Hash-Based Signatures: 14 / 40

The Winternitz checksum

Write HASH(message) as a sequence of a 4-bit digits, to1,.. -1
max = a(2" —1)

checksum <— max — Y7 ¢

vvvyYyy

Now, walking forward on any chain requires walking backward
on checksum!

» Checksum is written as a base-16 number and encoded in
three more hash chains

Checksum ensures any change requires going backward on some
hash chain

Hash-Based Signatures: 15 / 40

Winternitz/WOTS+: Encoding the checksum

» Need 64 hash chains of length 2% to encode hash
» One for each 4 bits chunk of hash being signed.

» Maximum possible sum of values in those chains is:

64 x 15 =960

» 0 < Checksum < 960
Need lg(max +1) bits!

» Since each chain encodes 4 bits, we need three more chains to
encode checksum.

SPHINCS+ category 5, Winternitz signature is 67 hash values!

Hash-Based Signatures: 16 / 40

Making a WOTS+ Public Key in SPHINCS+ (1)

» Private key = Xp. 66,0, generated pseudorandomly.
» prefix[i,j] = the unique prefix for this one time key, this chain
(1), and this step (j)
» For each i =10...66:
> Forj=1...15:
> X;; = HASH(prefix[i,] || Xi,j—1)

» Note: Each hash operation incorporates a unique prefix.

Hash-Based Signatures: 17 / 40

Making a WOTS+ Public Key in SPHINCS+ (2)

skoo skio skes0
¥] i
2
¥ v
pko pky Pphes
~
H(PK.seed || ADRS® |[pko || pky || ... || pkee)

» Given final values in all 67 hash chains, Xo. 66,15

» Public key also includes a prefix for this particular one-time
key ID

» Public key preimage =

prefix || Xo,15 || X1,15 || - - - || Xe6,15

» Public key = hash of public key preimage

Hash-Based Signatures: 18 / 40

How it's done in SPHINCS+

sko,o sk1,0 skee,0
H(ADRSp ol --.) | H(ADRSq gl ...) ‘ H(ADRSgg gl - -) ‘
H(ADRSq 11 -..) | H(ADRS; 4||...) | eee | H(ADRSgg l...)

)

i

o0 0 €

| H(ADRSg 141l .. .) “ H(ADRSy 14l ...) | | H(ADRSgg 141l .. .) ‘
v 2 v
pko pky pkes
H(PK.seed || ADRS® |[pko || pky || -.. || pkee)

Hash-Based Signatures:

19 / 40

How do we use one-time keys?

» One-time signatures aren't very useful-you want to sign many
times

» SPHINCS+ can sign up to 2% times
» First tool we need for this: A Merkle tree

Hash-Based Signatures: 20 / 40

Merkle Trees

PK %/Q\‘
PK,—>
PK— > g
2 ‘/H\/ —
PK,—»
PK —>/—~\
4 H)
PK,—» "
TH
PK — N/
>
PK, N
PKB—E/Q\\
PK,—» \H
PKO—> e
PK, >
PK
PK %\H/\,,,\
(H
PK,, H/
PK,

N

e

(x

N

(x)

h

/

I

N

_/

Hash-Based Signatures:

21/ 40

A binary tree made by hashing things together!

» Make a list of 2" one-time signing keys, PKo 12, 271
» Hash each pair together to make input to next hash.
> Keep going until we reach the root.

The root contains the hash of all the leaves.

Hash-Based Signatures: 22 / 40

Merkle Tree Path

PK—»

I)

PK e
PK T
PK, ISR

(PRy—a

PK,—»
H

PK —» =
PKGH./'
PK,— —

PK, —>\\H/ T
PK. —>/—)

(H)—»root

\ I

PK —»

PK, —>/H\
PK —» — /
PK. » \H

14) -
PK154>\,/

| have a list of 2" items.
» Compute Merkle tree and give you root.
» Later, | can prove PK; is member of list with n hashes.

Hash-Based Signatures: 23 / 40

Hypertrees

/ N\
2 keys\
\
N
N\

3

S

k
/3

///

A\
/32 key
//

//

> A hypertree is a "tree of trees”
» Each tree is a Merkle tree full of one-time keys
» Each tree after the first is generated on the fly as needed

» Each tree has its root signed by a one-time key from the
previous tree

Hypertrees—Trees of Trees: 24 / 40

Big ldea

1. Generate Merkle Tree of 2% keys.
2. Use each key to sign a Merkle Tree of 2 trees.
3. Result: We have 2 keys.

And we can iterate this process as many times as we like

Hypertrees—Trees of Trees: 25 / 40

Tree of Trees...of Keys

Pk~ sign »root < 220 keys

root< 2% keys

tree
path

“sign > message

‘ Final signature on message

Getting 20 keys with 229-element Merkle trees:

Hypertrees—Trees of Trees:

26 / 40

Tree of Trees...of Keys

Getting 20 keys with 22-element Merkle trees:
> Generate a list of 220 one-time signing keys.

» For each of those keys, we have a tree of 220 one-time signing
keys we can generate.

» Using PRF, we can ensure we always generate same tree*.
» Produce paths through both trees + both signatures!

* This is critical-otherwise we might sign different things with
same key!

Hypertrees—Trees of Trees: 27 / 40

We can have many levels of trees

4 /
e
yd é) e n W
@ <\ % // /‘ﬁ §
root / § < e % R
. % \ ~ \\J, PK‘
\\\ \(‘(>‘J

. \J

In SPHINCS+, we have huge numbers of trees

> Always around 2% leaves in the hypertree
P> Leaves are used to sign few times signature keys

» SPHINCS+256s (slower/smaller version): 8 layers of tree,
each tree of depth 8

» SPHINCS+256f (faster/larger version): 17 layers of tree, each
of depth 4

Hypertrees—Trees of Trees: 28 / 40

SPHINCS+ Structure

root
public key

merkle

tree

final
signature

Lo
CWesign>
o

ree

CW-sign >

‘v

Hypertrees—Trees of Trees: 29 / 40

Structure of SPHINCS+ signatures

> Top level Merkle tree
» Root = (some of) master public key
» Leaves = Winternitz one-time keys
» Hypertree of 264 or 298 one-time keys on bottom layer

> 8 layers of depth 8, or 17 layers of depth 4

» A Winternitz one-time key signs root of next Merkle tree

P |eaf of this tree = next WOTS key used.

> Messages are signed with FORS (few-time signature) keys

» The final one-time key in the hypertree always signs a FORS
key

» Each FORS key can sign a small number of times before losing
security

» This allows us to have smaller hypertree without losing security

Hypertrees—Trees of Trees: 30/ 40

SPHINCS+ Structure

root
public key

merkle

tree

final
signature

Lo
CWesign>
o

ree

CW-sign >

‘v

Hypertrees—Trees of Trees: 31/ 40

Part 2: Hash functions and Merkle-Damgard Hashes

Hypertrees—Trees of Trees: 32 /40

Merkle-Damgard hashes: How SHA256 is Made

m m m *
iV 0 » h0 1 » h1 2 » h2m3“10 L hﬂna‘

» Our result only applies to SPHINCS+ when it is using
SHA256 to get 256-bit security

» Understanding it requires looking "under the hood” of
SHA256

Hypertrees—Trees of Trees: 33 /40

Merkle-Damgérd Hashes (1)

Big idea: Make a good fixed-length hash function, then build a
variable-length hash from it.

A S
iv w/l;\»h > l; =
_/ 3

» We need a fixed-length compression function, F(h, m)
» hj, = hash chaining value, n bits. (Example n = 256)
» hoyue = hash chaining value, n bits.
» m = message block, w bits. (Example w = 512)

» Pad the message, break into w-bit chunks, and process
sequentially.

Hypertrees—Trees of Trees: 34 /40

Merkle-Damgard Hashes: How SHA2 Works

LlO*L

Tl]

To
7N
F

__/

v Tz
- /'7'\
F F

___/ [N /’ L flnal

1. Pad message to integer multiple of 512 bits:
» 10* padding
» ..plus length of unpadded message (Merkle-Damgérd
strengthening)

. Break padded message into 512-bit blocks myq 1 »

1&gy

3. h_1 = fixed initial value, iv.
4, h,' — F(h,-,l,m,-) for i = 0,1,2,...,/(* 1.
5. Final h; is HASH(M)

Note: Only impact of mq._; is on h;

Hypertrees—Trees of Trees: 35/ 40

Herding Hash Functions

e S

ﬂh/v

h

7

Hypertrees—Trees of Trees: 36 / 40

A problem

> | want to carry out a multitarget preimage attack
> My messages all start with different prefixes
» What can | do?

Hypertrees—Trees of Trees: 37/ 40

The Diamond Structure: A Merkle-Tree Computed by

Finding Collisions.

P1 || part of key
—_———»

P2 || part of key
—_———

P3 || part of key

_—
P4 || part of key
— —

P5 || part of key
D ——————

P6 || part of key

P7 || part of key
————————»h,
P8 || part of key
—_——————

T hio

h/ \h

h.
ha> o

\bh

——

“/\/

Z\
Ndiamond

» Starting from 2k different prefixes

» Find pairwise collisions to map these down to a single
intermediate hash value

» Result: A diamond structure that routes 2% input hash
chaining values into hash value

Note: Edges have multiple message blocks; nodes are hash

chaining values.

Hypertrees—Trees of Trees:

38 / 40

How this

is used in our attack

P1]|freel . to, ——» Original P1 hash

P2 free2 |, _~ \ t, —» Original P2 hash
P3 || free3 ha / t, —» Original P3 hash

P4l freed / t;—» Original P4 hash
PS5 || free5 hs t, — Original P5 hash

h/h \ ts —» Original P6 hash

P7 || free7 P ts—»Original P7 hash

h13
P8 || free8 h /

7 ———» Original P8 hash

Hypertrees—Trees of Trees: 39 /40

Wrapup

> We've discussed internals of SPHINCS+
> WOTS+ signatures
> Merkle trees
» Hypertrees
» How SPHINCS+ works
» ...and internals of SHA256

» Merkle-Damgard hashes
» Multitarget attacks
» The diamond structure

Hypertrees—Trees of Trees: 40 / 40

	Hash-Based Signatures
	Hypertrees–Trees of Trees

